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Solution Behavior of the Transient Heat Transfer
Problem in Thermoelectric Shape Memory Alloy

Actuators

Zhonghai Ding* Dimitris C. Lagoudas*

Abstract

The main purpose of this paper is to study the solution behavior of the transient
heat transfer problem for one dimensional symmetric thermoelectric shape memory
alloy (SMA) actuators. It is proved that for the transient cooling problem with constant
electric current density of magnitude |J| there is a value Jy of |J| such that when
|J] < Jo, the temperature in SMA is always decreasing to its steady state, and when
|J] > Jo, the temperature in SMA may not be always decreasing, which is an important
property of thermoelectric SMA actuators reported by Lagoudas and Ding (1995). A
lower bound of Jp is given. The physical implications of main results are also discussed.
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1 INTRODUCTION

Shape Memory Alloys (SMA) [5] undergo an austenitic to martensitic phase transfor-
mation upon cooling, while with some hysteresis they fully recover their parent phase when
heated above the austenitic finish temperature. A thermodynamic formulation of the phase
transformation in SMA has been given by Tanaka and Nagaki [14] based on the thermo-
dynamic approach to dissipation proposed by Edelen [9]. Many other researchers have also
contributed to the thermomechanical constitutive description of SMA, some of the key refer-
ences can be found in [2, 3]. SMA have been proposed as actuators for shape and vibration
control of structures, especially the Ni-Ti (Nitinol) system. The capability of producing large
actuation forces during the martensitic to austenitic phase transition is the major advantage
of SMA. The major disadvantage in utilizing SMA actuators is the low rate of cooling, since
the time constant for heat transfer is usually large compared to the frequencies required for
many engineering applications. Recently a new SMA thermoelectrically cooled or heated
actuator has been studied by Bhattacharyya et al. [1] that utilizes the thermoelectric ef-
fect for heat transfer from and to the SMA, by making the SMA actuator the cold or hot
junction of a thermoelectric couple respectively. From the heat transfer model proposed in
[1], Lagoudas and Ding [13] have proposed an equivalent simpler model, which is governed
by an integro-differential equation, for 1-D symmetric thermoelectric SMA actuators. They
investigated both transient and multiple cycle solutions induced by a piecewise constant
electric current source numerically. They observed and conjectured that for the transient
cooling problem with constant electric current density of magnitude |J| there is a value Jy
of |J| such that when |J| > Jo, the temperature in SMA may not be always decreasing.

The purpose of this paper is to study the behavior of transient solutions to heat transfer
problems of 1-D symmetric thermoelectric SMA actuators theoretically. We will restrict
ourselves to the linear case (the heat capacity of SMA is approximated by a constant) and
prove the above important conjecture of the transient solution and derive an estimation of
the value Jj.

The arrangement of this paper is as follows. In Section 2, the analytical modeling is intro- _
duced and the existence and uniqueness of transient solutions are established. A numerical
example corresponding to the typical Nitinol SMA actuator is also included to display the
behavior of transient solutions. In Section 3, we first discuss the asymptotic behavior of
the transient solutions and then prove that for the transient cooling problem with constant
electric current density of magnitude |J| there is a value Jo of |J| such that when |J| > Jo,
the temperature in SMA may not be always decreasing. An estimation of the value Jj 1s
also given.




2 HEeAT TRANSFER MODEL OF THERMOELECTRIC SMA Ac-
TUATORS
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Figure 1: One dimensional three phase P-SMA-N thermoelectric system

The 1-D heat conduction problem in which a thin SMA material is confined between two
semiconductors, a N-type and a P-type, forming the junction of a thermoelectric element
is shown in Fig. 1. This thermoelectric SMA element is proposed by [1] as an efficient
way of fast cooling or heating of SMA actuators. The principle of thermoelectric heat
transfer is based upon the Peltier effect 8], according to which an electric current flow
creates a temperature differential between junctions where dissimilar metals meet. For the
case shown in Fig. 1, the net heat flux across interfaces, N-semiconductor/SMA and P-
semiconductor/SMA, is given by

-

(s - Gw)- = (@ — )T )Tw(5.0),

(2.1)
= = . = d
(@s —Qp)-fi=(aF —a”)(J- n)TP(“E’t),

where, for i = N, S and P corresponding to N —semiconductor, SM A and P—semiconductor
phases respectively, Q; is the heat flux vector in the i—th phase, 7 is a unit normal along the -
positive z—direction (as shown in Fig. 1), o' is the Seebeck coefficient of i—th phase, Ti(z, t)
is the temperature at (z,t) in i—th phases, and J is the current density. When current J
flows through the junction, the Peltier effect induces jump discontinuities in the heat flux

across the interfaces, which makes the thermoelectric element in Fig. 1 either a heating or
cooling element, depending on the current direction.

In the 1-D three phase N-SMA-P thermoelectric system, it is assumed that the tempera-

ture in each phase does not significantly varies on the plane perpendicular to r—axis, hence




the Fourier law of heat conduction becomes

Qi = —KiaTi

ik
where K; is the thermal conductivity of i—th phase. The electric current density vector
is given by J(z,t) = J(¢)Ai. If Ty is the surrounding temperature (for example, the room
temperature) of the 1-D three phase N-SMA-P thermoelectric system, the convective heat
transfer, which occurs across the sides of the i—th phase, is included approximately as a
source term, —HP(T; — Ty)/A, in the heat conduction equation for the N-SMA-P system,
where H is the heat convection coefficient, P and A are the perimeter and area of the cross
section respectively, which are assumed to be independent of z (see [6]). The heat conduction
equations for the three phases of the N-SMA-P system are then given by (see [1])

f\N—‘—amz (z,t) + pnJ2(t) —HZ(TN(x,t)—TO) = cFN—= o = (z,1t), (2.2)

d/2<z<L+df2, t>0,

0°T, ) P , 0T,
K’"a;?(x’t) + ps J7(t) — HZ(T,(m,t) -Ty) = C; 5 (z,1), (2.3)
~d/2<z<df2, t>0,
o°T,
Kpa—xz’i(z,t) + ppJ3(t) — H%(Tp(z,t) ~Ty) = cPaTP (z,1), (2.4)

—L-d[f2<z<-df2, t>0.

where p; is the electrical resistivity and p;J 2(t) represents the Joule heat in the i—th phase,
and C! is the heat capacity per unit volume of i—th phase. The interface conditions consist

of continuity of the temperature field -

d d
Ts(§,t) = TN(E’t)’ Ty(—= t) = Tp(-— t), (2.5)
while the heat flux interface conditions (2.1) given earher reduce to
BT d oT
kZCy = K EG exTw(5,0J(0)
(2.6)
yd aTS d _ aTP d d
—A_, or (_ﬁ’t) = -—Kp—ax—(—i,t) + Otpr(—§,t)J(t),
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where it is assumed that a, = 0, which is justified as the Seebeck coefficient of an SMA
is very low compared to that of the N or P semiconductor. Moreover, the end boundary

conditions are

d d
TN(L + 'é',t) =Ty, Tp(—L - -2-,t) = Ty, (27)
while the initial conditions are stated as
( d d
TN(IL',O) = To, 5 SIESL‘*“Q',

{ Ts(z,0) = To, —gﬁms

d
LTP(J;,O) = Ty, —L——-<:z:<—-2-.

The heat capacities, C¥ and CF, of N-type and P-type semiconductors are taken to
be independent of temperature, while the heat capacity C: of the SMA material varies
significantly with T" due to the temperature induced phase transformation. Even though the
electrical resistivity p, changes with temperature during the phase transformation of SMA,
lack of precise experimental data limits us in assuming that p, is constant. Dependence of
ps on temperature with possible hysteresis can be accounted for mathematically by varying
the magnitude |J| of J.

Due to the relatively large thermal conductivity K, of the SMA, compared with the
thermal conductivities Kp of the P—semiconductor and Ky of the N —semiconductor, the
temperature distribution in the SMA material is expected to be almost constant for small
ratios d/L. It is possible, therefore, to simplify the three phase model into an approximate
two phase model, by incorporating the SMA into the P-N interface. Integrating the field
equation (2.3) with respect to z from —d/2 to d/2, substituting (2.6) in the resulting equa-
tion, and then using (2.5) and the assumption that Ty(z,t) is independent of z, we obtain

-

the following equation

0Ty ,d oTp, d ... HdP,_ d
KN dz ("Q_at) - KP 5z (_E’t) +psdJ (t) - A (TN(E’t) _TO)
(2.9)
_ d d , Ty d

Since the heat conduction equation (2.3) for SMA is replaced by the interface equation (2.9),
for simplicity of notation, we shift the domains of the remaining field equations (2.2) and
(2.4) for N-type and P-type semiconductors, [-L-%,~%] and [, L+$}, to[~L,0] and [0, L],
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respectively. If we assume further that of = —a" > 0 and all other material parameters of
P—type and N —type semiconductors are the same, namely, cCN=CF=C,Kn=Kp=K
and py = pp = p, then the temperature distributions T (z,t) and Tp(z,?) are symmetric,
ie. Ty(z,t) = Tp(—z,t). Let T(z,t) = Tn(z,t) = Tp(—2,t), the initial boundary value

problem for the symmetric 1—D N-SMA-P system (2.2)-(2.8) is then reduced to

( 2
0.2 (a,1) = K3 5 (a, )+ p72(0) - S (T (@) = Ty), 0<a<Lyt>0

T(z,0)=Tp, 0<z<L, T(0,0)=T,
¢ T(Lat) = T01 t2> Oa (210)

(0,00 + pud?(t) - 5T (0,) Ty

= —2T(0,t)af J(t) + C’ (0 t), t>0.

Because of the interface condition in equation (2.10), classical methods such as the sep-
aration of variables method, integral transform methods, etc. can not be directly applied
to (2.10) to derive an analytical solution. Furthermore, because of the temperature depen-
dence of the heat capacity of SMA, the boundary value problem (2.10) becomes extremely
challenging to study theoretically and numerically.

One way to solve equation (2.10) is expressing the interface equation in (2.10) as an
independent equation for T(0, t), then solving the following Dirichlet boundary value problem
(once the distribution T'(0,¢) is found):

(a: t)=K 2T(:n t) + J%)—%(T(z,t)—To), 0<z<L,t>0

T(z,0)=Ty, 0<z <L,
\ (2.11)
T(L,t) =T, t2>0,

| T(0,8)=T@), t>o.

To express the interface equation in (2.10) as an independent equation for T'(0,1), we need

to find the relation between T'(0,t) and ZT(O t). Assume T(0,t) = T(t) is given in (2.11),



by using the separation of variables method and Fourier series technique, we could obtain
T(z,t) = H(z,t,T(t)) from (2.11). Hence the relation between T(0,t) and %—Z—(O,t) would
be given by £(0,t) = 88(0,¢,T(t)). Based on this idea, we obtain the following integro-
differential equation of T'(0,t) = T{(t), which is equivalent to the interface equation in (2.10)
(the detailed calculation can be found in [13]),

[et-m (g’-m , ulT(r>) i+ L () + m(OT() = TF()

(2.12)
T(0) = Ty,
where
L o HP o ZLefI@) 1, PHLA
m=Tg M"Toa T Tk 2" 4KA’
e K ((2n-1)7 * HP
t) = P{—-|— t
F(?) ;EX { (C< - >+CvA) }
> K /nm\2 HP
G(t) = EXP{— (—— (-—) + )t}
El . \T) TCA
and
N HP 2 [t \ 1 PHLd p,dL
]—'(t)-[) G(t T)CUAdT+Tva A F(t-1)J (T)d7'+2+ KA +4KT0J(t).

Once the temperature distribution in the SMA interface T(0,t) = T(t) is found from
(2.12), the temperature distribution T(z,t) in P—semiconductor and N —semiconductor can
be found by solving the initial boundary value problem (2.11). Therefore the study of the
transient heat conduction for the 1-D thermoelectric P-SMA-N system reduces to the analysis_
of the integro-differential equation (2.12). Before we proceed with further discussions, it
is desirable, for simplicity of mathematical and physical discussion, to non-dimensionalize
equation (2.12) by using non-dimensional groups which are obtained by the application
of the Buckingham-m theorem [4]. The non-dimensional quantities in this study following
the notation used in [1], where a letter with an overbar represents the non-dimensional



counterpart of a physical quantity with same letter, are listed below:

4

=z _ (cI\ A T

I-—-I? t—-t< K ) ; T'—-ii,

S B R N L 5 PHL® (2.13)
5= P2 me = Co, =L
Lp—. p7 Cu.‘_' v’ d-2L'

From now on, unless mentioned otherwise, all quantities are assumed to be non-dimensional.
For simplicity of notation, we will drop the overbar from the letters used for the non-
dimensionalized quantities introduced in (2.13). Then equation (2.12) becomes

/Ot Gt —1) (é—f(f) +H T(T)) dr + u%—(t) +v(t)T(t) = F(t)

(2.14)
T(0) =1,
where
csd 11,1
p= =5 U=+ 5HA - Gad () (2.15)
0 _ 1322 © 2,2
n=1 n=1
and

~gf o [ Rl — AV E g L L ar
f(t)_H/O G('r)d/+2/0 F(t = 7)2(r)dr + 5 + ZHd + 5pd.°(2).

The existence and uniqueness of solution to (2.14) have to be established first.

Theorem 2.1 Let J € C(0,00) and the heat capacity of SMA, C;, be a constant. Then the
integro-differential equation (2.14) admits a unique solution in C[0,00).

Proof. Let us first consider the following equation

C-g(t)JrHT(t) = S(t), t>0
(2.16)

T(0) = 1.



We obtain

t
T(t) = e~ Ht ¢ /0 e~ H(t = T)g(r)ar. (2.17)
Substitute 7'(t) into equation (2.14), we have the following integral equation,

uS() + | ‘Gre TS = F (), (2.18)

where

G'(t,r) = G(t—7)+(w(t) - pH)e HE=T),

F) = F) - @) - pH)e

Equation (2.18) is a Volterra equation of the second kind, where the kennel G*(t,7) has a
weak singularity of |t — 7|~%. By [11, Theorem 7, pp. 35-37], equation (2.18) has a unique
solution in C(0, o). 1

Table 1: Material parameters

Ni-Ti SMA P-Element
Thermal Conductivity K | 2.2 x 10-2W/( mm —° K) | 1.63 x 107W/( mm —° K)
Heat Capacity C, 2.12 x 10-3J/( mm?® —° K) | 4.35 x 1073J/( mm® —° K)
Resistance Density p 6.3242 x 1070 — mm 1.15x 1072Q — mm
Seebeck Coefficient o 1.2 x 10~%Volts/°K 2.15 x 10™*Volts/°K

Let us also look at an example of a typical Ni-Ti SMA actuator to get some intuition. The
material parameters of the Ni-Ti SMA and the P-type semiconductor at room temperature
Ty = 300°K shown in Table 1 are adopted from [1]. The heat convection coefficient H is
assumed to be H = 2.5 x 10-5W/ mm? —° K, and the geometric parameters of the SMA-
actuator are given by L = 4.0 mm, d = 2.0 mm, P =4.0 mm and A =1.0 mm?. By (2.13),

we obtain the following non-dimensionalized parameters:

p=54993 x 1072, o =08601, C:=0.4874,
H = 0.9816, d = 0.25.

Applying the finite difference scheme to (2.14) [13], we obtain the temperature distribution

at the SMA interface corresponding to different values of J for constant C;, which is shown

in Figure 2.
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Figure 2: Temperature in SMA corresponding to different values of J for constant C;

The temperature distributions at the SMA interface corresponding to different values of
J for variable C} is shown in Fig. 3, where the dimensional heat capacity of a typical Ni-Ti
SMA has been experimentally determined and may be represented by the function (see [1,
12])

n100 - pteteorir- Mt
|M, — M|

during the forward transformation (austenite to martesite) and the function

C;=CY+[Lg — CYM, - My)] - M;<T <M, (219)

_ 21n100 p_AetAs
C:=C%+[Ly — CoAs — A,)] - I}am_l%e w4 < <A, (220)
s = 4f

during the reverse transformation (martesite to austenite), with C2 = C? at all other tem-
peratures. When an SMA is initially at the austenitic state, its crystal structure, upon
cooling, starts to change from the austenitic phase to the martesitic phase at the starting
temperature, M, and finishes at the finishing temperature, My, when the martesitic phase
is formed. When an SMA is initially at the martesitic state, its crystal structure, upon
heating, starts to change from the martesitic phase to the austenitic phase at the starting
temperature, A,, and finishes at the finishing temperature, Ay, when the austenitic phase
is formed. For a typical Ni-Ti SMA (1], M; = 278°K, M, = 296°K, A, = 302°K and
Ap=324°K, Ly = 0.1 J/mm3 and C? = 2.12 x 1073 J/( mm® —° K).
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Figure 3: Temperature in SMA corresponding to different current densities for variable C;

For the constant C? case, we find from Fig. 2 that the temperature profiles in SMA are
quite different corresponding to different values of the current density J. For J = —0.4 and
= —0.9, the corresponding temperature in SMA always decreases asymptotically to the
steady state temperature. For J = —1.5 and J = —1.9, the corresponding temperature in
SMA decreases first, it reaches its lowest value at some finite time and then asymptotically
increases to the steady state temperature. Similarly, for the variable C} case, we observe
the same phenomena as shown in Fig. 3 and discussed in more detail in [13]. As pointed
out before, the major disadvantage in utilizing SMA actuators is the low rate of cooling,
because the time constant for heat transfer is usually large compared to the small time
constants required for many high frequency engineering applications. Thus to maintain a
monotonic decay of the SMA temperature is very important in engineering applications.
It is conjectured and confirmed numerically in [13] that for the transient cooling problem
with constant electric current density of magnitude |J| there is a value Jg of || such that
when |J| < Jo, the temperature in SMA is always decreasing to its steady state, and when
|J| > Jo, the temperature in SMA may not be always decreasing. We will further investigate

this question in the next section.
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3 SOLUTION BEHAVIOR OF THE TRANSIENT HEAT TRANS-
FER PROBLEM

In this section, we investigate the solution behavior of (2.14). Due to the complicated
nature of SMA heat capacity C? (see (2.19) and (2.20)), we only study the constant CJ
case. Thus through this section, we always assume Cj is constant. In most of engineering
applications of thermoelectric SMA actuators, the typical time for current density J(t) to
reach its steady state is much smaller than the typical time for temperature T(t) to reach
its steady state. Therefore for the study of long-time asymptotic behavior of T' (t), we will
assume J(£) to be constant. For the study of small-time asymptotic behavior of T(t), we will
not assume J(¢) to be constant. If J(t) is assumed to be constant, the exact solution of (2.14)
can be found by using the Laplace transform. However, the expression is too complicated
for an immediate interpretation.

Let us first look at the long-time asymptotic behavior of the transient solution to (2.14).
Theorem 3.1 Let J(t) = J be a constant function in equation (2.14) and T(t) be the
solution of (2.14). Then the transient solution T(t) is stable provided that

2H7’]1+1+Hd
a .

J < Jpaz =

The steady state solution is given by the following formula,

T - (2Hmy + 1+ Hd) + (pd + 4np) J*
= (2Hm + 1+ Hd) — oJ ’

where n; and 1 are given by

_i 1 & 1
M=l T m_nzl (2n - 1272+ H

n=1

(3.1)

Proof. To investigate the stability of the solution to equation (2.14), we only need to study
the transfer function of (2.14), #(s), which is the Laplace transform of w(t), the solution of
(2.14) corresponding to the unit-impulse input at ¢ = 0. Applying the Laplace transform to
the equation

dw

/Ot G(t — 1) <§d%(7') + Hw(7’)> dr + 1 o (t) + vuw(t) = 6(t),

where §(t) is the unit-impulse function at t = 0, we obtain the transfer function w(s) of
(2.14) given by

12
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where
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Figure 4: Graph of G(s)(s + H) + pus +v
For simplicity of notations, let
v =nir?+H, n>1

Notice that the denominator of @(s), G(s)(s + H) + ps + v, is continuous on (~vs4+1, =),
n=1, 2--+, and (—vy, +00); G(s)(s + H) + pus +v — Foo, when s — v, =0 for any n > 17
and

- 1 & v, —H
G H = PR 0.
(G(s)(s + H) + ps +v) ;(s+vn)2+u>

Thus G(s)(s + H) + ps + v is always increasing. The graph of G(s)(s + H) + ps + v is
sketched in Fig. 4. Denote by {\,}2%, the zeros of G(s)(s + H) + ps + v on the real line .
Thus

e Ay € =Up < Aol € ~Upy <0 < =19 < A < =y <0,
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and A, ~ O(n?). It is also easy to check that G(s)(s + H) + ps + v has no other zero on
the complex plane. Thus except for {),}2%,, ¥(s) has no other poles on the complex plane.
For the first pole A of W(s), A < 0 if and only if

GO)O+H)+p-0+v=GO)H+v>0.

By using notations in (2.15) and (3.1), we have

1 1 1
24+ -Hd- -aJ > 0.
Hn1+2+2Hd 2on>
Thus the transient solution T'(t) of (2.14) is stable if and only if
2H 1+ Hd
cmt e

(8

J

When J satisfies the above inequality, the steady state of the transient solution T'(t) to

equation (2.14) can be obtained. It is easy to verify that
1

lim F(t) = (Hm +5+ %Hd) + (%pd + 27;2) 2.

Thus letting cii—i:(t) =0 and ¢t — oo in (2.14), we obtain that

T (2Hn, + 1+ Hd) + (pd + 41p) J?
= (2Hm +1+ Hd) —aJ '

Remark 3.1 Note that in the present work, the heat convection coefficient H is assumed
to be constant, which is true for small temperature variations. For the example given in the
last section, for a stable transient solution to exist, J has to be less than Imaez = 1.8056.
Since T, approaches infinity when J is close to Jnaz O goes to —oo, as shown in Fig. 5, the

assumption of H being constant is not valid any longer.

Remark 3.2 Theorem 3.1 gives an important condition on the current density J for the
stable temperature of (2.14). For the transient cooling problem of SMA actuator, i.e. J <0,
the transient solution is always stable. Corresponding to the example given in the last section
with the data given in Table 1, we have

_1.5530 + 0.4765J°
"~ 1.5530 — 0.8601J

To(J)

From the graph of To.(J), shown in Fig. 5, we have that Tmin = r}1<151 Too(J) = 0.8285 when
JIim = —(.7476.
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Figure 5: The graph of T

Even though T™" is a measure of the maximum ability of the thermoelectric element to
cool down the N-SMA-P junction, the short-time response is also important for the design
of high frequency SMA actuators, and it will be investigated next. Let ¢, > 0 be very small,
and let J(t) be given by

J@#)=J+ St +o(t), 0<t<t.
Assume that T(¢), for small time ¢, has the asymptotic series expansion given by
T(t) = 1+T1t+0(t), 0Lt <.

We will determine T} from (2.14) in terms of Jj, J, and material parameters. Substituting
the series expansions of T'(¢) and J(¢) into (2.14), we have

/0‘ G(t — 7) (Ty + H + o(1)) dr + uT; + o(1)

+(=3alh + Bt 4 o0) + 5 + 3Hd) (14 Tit + o(t) = F(2).

By comparing the coefficients of 0-th order terms in t and using the fact that

0< F(t) <G(t) < t >0, (3.2)

1
7/t

we obtaln



a pd aJy aly
Ti=| —+ — Y —— =
1 ( p + #Jl> J1 op - Cd’

. C . dJ C
where the approximate value is justified whenever p—a—l << 1, which is the case for the
example given earlier.

If J; = 0, hence Ty = 0, the above expansion of T(t) does not provide any further
information. Let J(¢) be given by

J(t) = JQt + O(t), 0 <t<L to.

Assume that T(t), for small time ¢, has the asymptotic series expansion given by

T(t) =1+ Tot* +0(t?), 0<t<ty.

Substituting the series expansions of T'(t) and J(t) into (2.14), we have

| "Gt — ) (H + 2Tyt + oft)) dr + 2uTat + of2)

+ (~paldat +o(t) + 5+ 3Hd) (1+Tatt + olt2) = F(0).

By comparing the coefficients of first order terms in ¢ and using (3.2), we obtain

a a
=X = s
o= 2= 3ca”

Next we will study the solution behavior of equation (2.14). The following important
theorem explains why the solution behavior of equation (2.14) is quite different for different
values of J.

Theorem 3.2 Let T(t) be the solution of equation (2.14) with J(t) = J <0, corresponding
to the transient cooling problem. Then there ezists a value Jy for |J|, such that when 0 <
|J| < Jo, T(¢) is always decreasing to its steady state T, otherwise T(t) may not be always
deceasing. A lower bound of Jy is given by

—b+ Vb2 +4dac

o = 2a

where
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2\,/§a

7r2

b = pd+£+-2-—‘£[1+Hd(1—c’)]

Proof. Let us consider the homogeneous equation

/0 ‘Gt - ) <9%1(7-) + HT1(7)> dr + u%{t) FUTi(E) =0

(3.3)
Ty (0)=1.
Applying the Laplace transform to this equation, we have
= +G(s
T]_(S) = = £ ( ) .
G(s)(s+ H)+pus+v

By Lemma A.2 in the Appendix, there exists a sequence of real numbers {b,} such that

)=3 5

n=

s — /\n'

o

Then -
= Z bnel\nty (34)

=0

3

and 77(0) = 1.

Now consider the non homogeneous equation

/ G(t — 1) (dTQ( )+ HT2(¢)) dr + ud—T—( t) + vIs(t) = F(t)

dt
(3.5)
TQ(O) = 0
By using the transfer function and Lemma A.1 in the Appendix, we have
© t
Tot) =Y an / M=) F(7)dr. (3.6)
n=0 0

Thus the solution of equation (2.14) is given by
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T(t) = Ty(t) + To(t) = 3 bue™* +E / M=) F (1) dr.

n=0
Rewrite F(t) as

201 > 001
Ft)=F(o0)—HY, -U—e_"“‘ —-2J2% P e -1t
n=1 Yn n=1 Y2n-1

where

1 1 1
F(oo) = Hnyy +2J%n0 + 5+ oHd+ 5de?.
By (3.7), we have

x

T(t) =3 Aub “+Zan,\/ w0 E(r)dr + F(0) S an.
: n=0

= n=0

Substituting the expression of F(t) in T"(t), we obtain

T/(t) Z Cl An t+ Z 02 —Umt Z C3 vﬂm_1t
n=0
where

L= A\.b, n— Hay\,
C, + F()a, — Ha :/:1 O +Um)

1
_2(]'2(111A )
Z 1 V2m-— 1()\ + Vom- 1)
e an A
C2 — H . mrn Qn;
m 72) Um(An + vm) 'Um nz—o
e = 21y Gn -2 > a
m = v2m_1(/\n -+ U-zm_1) UVam—1 p—g

Let us first consider {C2}. Simplifying CZ,, we obtain

=—HZ

0 An +vm'
Let s = —v,, in (A.1), we have

(3.7)

(3.9)




Hence C2 = 0. By the same reason, we also have C3 =0. Let us estimate C}. Simplifying
the expression of C} and substituting (3.8), we obtain

- o 1
C! = M\b, +va, + -1-(,0dJ2 +al)a, + Ha,G(A,) + 2J%a, Z —_—
2 m=1 /\n + Voam-1

By Lemma A.2 in the Appendix, substituting b, = (G(\y) + p)a, into (3.10) and using the
fact that G(Am)(Am + H) + pAm + v = 0 for any m > 0, we obtain

1 ad 1
L Z(pdJ? 20,3 ————. 3.11
C. 2(p J+ad)a, +2J% ngl o (3.11)
Thus
= (1 = 1
'(t) = ~(pdJ? o+ 2J%a, — ) &Mt 3.12
T'(t) 5(2(pJ+aJ)a +2J% mz=:1>\n+v2m_l>e (3.12)
Let J = —|J|, where |J| is the magnitude of J. Suppose there is to > 0 such that

T'(to) = 0, then it is easy to check that T"(to) > 0. Hence T'(t) may have at most one local

minimum point and no maximum point. By solving T"(to) = 0 for |J|, we have

o0
ad aet®
=0

|J| = —= ~ — : . (3.13)
d n Anto 4 n Anto
When ¢ increases, |J| decreases. Note that
€A <A1 < r <A <A< —H, and X, =~ O(n?).
Then by letting to — oo, we have
e 7 (3.14)
pd +4 z

=1 Ao+ Vam1

Equation (3.14) is a nonlinear algebraic equation because Xy is dependent of J. The exis-
tence of solution to (3.14) is easily obtained by using the Mean Value Theorem, while the
uniqueness follows from the monotonicity of Ag(J) and Role’s Theorem. Denote the solution
to (3.14) by Jo. When J > Jp, equation (3.13) will admit a solution for ¢, hence T"(t) = 0.
Thus the solution, T'(t), to (2.14) with J > Jy decreases first, reaches its minimum value at
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t = tp and then increases to its steady state T.,. On the other hand, the solution T'(t), to
(2.14) with J < Jy decreases monotonically to its steady state T, because T"(¢) # 0 for any
finite value of ¢t > 0.

Next we will give a lower bound estimate of the value J;. Notice that

Thus form (3.11), we have

Z '
/\0 + Vom—1

We need to estimate the value of \g. Let s = —H — 6(v; — H) where 0 < 6 < 1 to be

determined. Then

Cl < (ple]2 — a|J])a, + 2| [%a, (3.15)

G(s)(s+ H) +ps+v

=1 6
= ——9 — —_— — —
n2=2”2“9 =7 Ou(vi — H)+v—pH
< ——_ —
< 1_0+V uH

By solving the following inequality

——%+V—pH<0

we obtain that

v—uH
> ——
T 14v—puH
Thus by letting
_ v—pH
T l4v—pH’
we have
v—uH
- < —-H- —H)< X < -—-H. 3.16
’ A - B) <o < (3.16)
Since Z o is a continuous and decreasing function on (—wv;,0), it follows from
2m—1
(3.15) that
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1
1 2 _C 2
Cr S aa IJI 5171 +21J] mg LT YR
1+v—pH ' 2m-1
= o] Ziap -+ 2 S 1
"2 2 = L e S
l+v—pH
pd, o, « 2|J|2 T [ v—uH
= nl— —_—— t PSS, A —
an | =g+ v | \2V1+v—pH
4, —m8———
l+v—pH

pd, o 2|J|2 V3 [ v—pH *
< _ - —_ ] —_—
< an(2|J| |J|+ - ten s T30 —aH))

where, in deriving the last inequality, we have used the fact that C; <1 and v — pH > %
By using the inequality

tan (Z ad <l+ i:r:, Vz >0,
z e
and
1 Hd
V——uH—-—aIJI-i— +—(1 cy),

then we obtain

Cl < a, (’;_d|J|2—g|J|+217;7| (C )(1+ (V—,UH)))

= o -o)

where

2\/§a

72

?

V3, 243 ¢
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Let

I = b+ Vb% + 4ac
0~ ’
2a

then C1 <0, Vn>0 when 0 < |J| < J§. Hence from (3.12), T"(¢) £ 0 for t > 0. |

Remark 3.3 Corresponding to the example given in the last section, with the data given

in Table 1, we have

J3 = 0.9780.

Our computation (see Fig. 2) confirms that when |J| < Jg, T(t) is always decreasing, and
for some values |J| > Jg, T(t) decreases first and then increases to its steady state T.

Remark 3.4 The results in Theorem 3.2 cease to hold whenever C; is a function of tem-
perature, which is the case during the phase transformation of SMA. Even though we have
not proved such a theorem yet for the variable C2 case, a similar result should be valid for
the variable C? case. In fact, the constant C? case is an approximation of the variable C;
case, hence the formula for the value Jj may be used in the variable C; case approximately
by replacing C? by an average < C: >. This is numerically confirmed by the example given
in this paper, as shown in Fig. 3, for C3(T') given by (2.19) and (2.20).

4 CONCLUSION

In this paper we studied the solution behavior of the transient heat transfer problem of
the 1-D symmetric thermoelectric shape memory alloy (SMA) actuator. From the analytical
model proposed in [13], we proved that for the transient cooling problem with constant
electric current density of magnitude |J| there is a value Jy of |J| such that when |J| < Jo,
the temperature in SMA is always decreasing to its steady state, and when |J| > Jo, the
temperature in SMA may not be always decreasing, which is an important property of
thermoelectric SMA actuators. A lower bound for the value Jy was obtained.

Due to the relatively large heat conduction coefficient of the SMA compared with the heat
conduction coefficient of the P-type and N-type semiconductors, the temperature distribution
in the SMA material is expected to be almost constant for small ratio d/L, and the results
derived in this paper are valid. When the ratio d/L is not small and the physical domain
of an SMA actuator is no longer 1-D, a proper three dimensional model of SMA actuators
should be introduced and studied.
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Appendix

Lemma A.1 Let J(t) = J < 0. Let 0(s) be the transfer function of equation (2.14). Then
there ezists a sequence of positive numbers {a,}52, such that

1 > a
W(s) = = = ——, sER, Al
(5) G(s)(s+H)+us+v ,Z___()S—)\n (A1)

where {A\n}32, are the single poles of W(s).
Proof. From the proof of Theorem 3.1, we have
e KA < Apm1 < <M <M< —H, and A, _"_'O(n2),

because J < 0. Generalize the transfer function (s) to the complex plane C, ie. @(2),
z € C. Thus (z) is analytic everywhere except {)\,} and each X, is a simple pole of @(z).
The residue of W(z) at z = A, is given by

-1
X v, —H
Res(i(2),2\,) = |5 —m 2 <
(@2 )= | 2 i T TS

1
7

Let a, = Res(#(z),\n). Then a, > 0 and Y _ n__ s convergent for any z € C \ {A}
n=0“" ‘n
because A, ~ O(n?). Let
f) = 0(z) - 3
a n=0% " )‘"‘ .

Since f(z) has no poles in C and 4(z) is analytic on C\ {A.}, f(2) is an entire function [7]. )
We will prove that f(z) =0, z¢€ C.

Let z = (v, — H)e® — H, 6 € [0,27] and m be sufficiently large. We have

o 1
(=)l = |G(z)(z +H)+pz+ ul
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m2ei? i0 ) 2 i
> m26f9+n2+eie+1+(”—“H)+”m“e
n#m

_ 1

- m? 1 —if 2,2
> R R B | +(v = pH)e™ + pm*x
n#m

< 1

- —1———-i—um27r2 —(v—pH)= Y —m2_
e +1 |n? — m?2

n#m
By the inequality |a + bi] > |a| for any a, b € R, we obtain

1 pKr? 1

. 2> 272,
e'9+l+C,,L2m _2+,um7'
Note that
m2
2 =
- /m_1 m2 ot m2 . m2
Y S m?2—(m—1)2  (m+1)2—m?
4m3 L™ m-i—:v"“l_*_m1 T —m|®
= ———+ —In —In
2m2 -1 27 m—1zlg 2 T4+ mlna
4m? m m
= 2mz_l-!—Eln(Qm—l)—-é—ln(2m+1)
< 2m+2.

We hence obtain
1

ld(2)] <

N =

+ pm?n? — (v — pH) — (2m +2)

2

oo m
+/ - 2d:v
m+l1 T2 —m

Also for z = (v — H)e — H, 0 € [0,27] and m > 2, by using the properties of {)\,} and

the expressions of {a,}, we have




n
<
= Z% |vm + An|
< r%—:l Qn-1 + Gm-1 + Am Z
- n=1 Um — Y |vm + ’\m—ll |’Um + Ami n=m+1 Yn ~ Um
vm-}-l — Um—1

<
— 2 né;n ln2 m2l Uy — H

1 (Qm + 2) 4
< (= = -
- pur2\ m? m

Therefore for z = (v, — H)e" — H, 6 € [0,27] and m be sufficiently large, we have

. = Qn
FE < B +|X 5
n=0 n
1 1 2m+-2 4
< 1 T e clits R
S+pmin? = (v—pH) - (2m+42) T

Since f(z) is an entire function, by applying the Maximum Modulus Theorem [7], we obtain
that f(z) =0 on C. Hence (A.1) is proved. i

By the same way, the following lemma can also be derived.

Lemma A.2 Let J(t) = J < 0. Then there ezists a sequence of real numbers {b,}32, such
that

_HHC) e ke (A2)
Gs)s+H)+us+v =05 An
Furthermore,
by = (G(A\a) + )an, and S b, =1. (A.3)
1
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